嚴格來講,
電渦流位移傳感器測量原理應該屬于一種電感式測量原理。電渦流效應源自振蕩電路的能量。而電渦流需要在可導電的材料內才可以形成。給傳感器探頭內線圈提供一個交變電流,可以在傳感器線圈周圍形成一個磁場。如果將一個導體放入這個磁場,根據法拉第電磁感應定律,導體內會激發出電渦流。根據楞茲定律,電渦流的磁場方向與線圈磁場正好相反,而這將改變探頭內線圈的阻抗值。而這個阻抗值的變化與線圈到被測物體之間的距離直接相關。
電渦流位移傳感器探頭連接到控制器后,控制器可以從傳感器探頭內獲得電壓值的變化量,并以此為依據,計算出對應的距離值。電渦流測量原理可以運用于所有導電材料。由于電渦流可以穿透絕緣體,即使表面覆蓋有絕緣體的金屬材料,也可以作為位移傳感器的被測物體。*的圈式繞組設計在實現傳感器外形緊湊的同時,可以滿足其運轉于高溫測量環境的要求。
位移傳感器可以承受有灰塵,潮濕,油污和壓力的測量環境。盡管如此,位移傳感器的使用也有一些限制。舉例來講,對于不同的應用,都需要做相應的線性度校準。而且,傳感器探頭的輸出信號也會受被測物體的電氣和機械性能影響。然而,正是這些使用過程中的限制位移傳感器擁有達到納米級別的分辨率。目前,位移傳感器可以滿足100μm到100mm的測量量程。根據量程的不同,安裝空間也可以達到2mm到140mm的范圍。
電渦流位移傳感器被用來控制不同的運動,監控液位,檢查產品質量以及其他很多應用。傳感器經常被應用于非常惡劣的環境,例如油污,熱蒸汽或者劇烈波動的溫度。一些傳感器還要在振動部件上使用,在強電磁場內或者需要離開被測物體一定的距離使用。對一些重要的應用,還需要對精度,溫度穩定性,分辨率和截止頻率提出要求。針對這些限制,不同的測量原理各有優劣。這也意味著沒有統一的優化測量原理的方法。